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Remote compromise of peripheral chips
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Threat Model

I/O MMU
Main processor

Peripheral
Device

Physical 
Memory

Device 
registers

Kernel mode

User mode

Direct Memory Access
(DMA)

MMU

Device 
Driver

Memory-mapped I/O
(MMIO)

User-
Process

Peripheral
Device Device 

registers

4



State-of-the-art: Analyzing HW-OS Interface 
(1/3)
• Device Adaptation
• Pros: Non-intrusive (OS-independent)
• Cons: Need for programmable device + limited visibility into driver
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Virtual machine (e.g., QEMU or hypervisor)

State-of-the-art: Analyzing HW-OS Interface 
(2/3)
• Virtual Machine
• Pros: High visibility yet non-intrusive
• Cons: Need for virtual device and/or virtualization HW support
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Symbolic execution environment (e.g., S2E)

State-of-the-art: Analyzing HW-OS Interface 
(3/3)
• Symbolic Devices
• Pros: No need for physical/virtual device
• Cons: Inherits cons of symbolic execution
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PeriScope

PeriScope – Our Approach

• In-kernel, page-fault-based monitoring
• Pros: No device-specific/virtualization requirement, Fine-grained 

monitoring
• Cons: OS-dependent
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PeriScope Overview
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PeriScope Overview
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PeriFuzz – Fuzzer for the HW-OS boundary

•Goal: To find vulnerabilities in drivers reachable from 
a compromised device

• Therefore, PeriFuzz fuzzes Driver’s Read Accesses to 
MMIO and DMA mappings
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Threat Model Review

Attacker can write any value to the I/O mappings 
even multiple times at any time

Peripheral 
Device

Device 
Driver

I/O mappings

13



if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00 
00 00 11 00

...

Potential Double-fetch Bugs in I/O Mappings
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❶ First fetch
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(without rechecking)

00 11
Device 
Driver00 11
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DE AD 01 23 
DE AD 45 67
DE AD 01 23 
DE AD 45 67

DE AD  BE EF 

DE AD  BE EF
An I/O mapping
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01 23 45 67
89 AB CD EF
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Fuzzing Loop

• Each iteration of the fuzzing loop 
consumes a single fuzzer-
generated input

• aligned to the execution of 
software interrupt (softirq) 
handler’s enter & exit

• can have one or more reads from 
I/O mappings.
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Prototype Implementation

• Based on Linux kernel 4.4 for AArch64 (Google Pixel 2)

• Ported to 3.10 (Samsung Galaxy S6)

• AFL 2.42b as PeriFuzz front-end
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Fuzzing Target: Wi-Fi Drivers

Broadcom’s Wi-Fi driver
in Samsung Galaxy S6

Qualcomm’s Wi-Fi driver
in Google Pixel 2
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1. Large codebase (Qualcomm’s: 443,222 SLOC and Broadcom’s: 
122,194 SLOC)

2. Highly concurrent (heavy use of bottom-half handlers, kernel 
threads, etc.)

3. Lots of code runs in interrupt & kernel thread contexts (rather than 
system call contexts)

4. No virtual device implementation available
5. No hypervisor support (EL2 not available in production 

smartphones)



Bugs Found

• Different classes of bugs
• 9 buffer overreads or overwrites
• 4 double-fetch issues
• 1 kernel address leak
• 3 reachable assertions
• 2 null pointer dereferences

• In total, 15 vulnerabilities discovered
• 9 previously unknown
• 8 new CVEs assigned
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Double-fetch Bug – Initial Fetch & Check

❶ The driver computes and verifies the checksum of a message

20

msg

static uint8 dhd_prot_d2h_sync_xorcsum(...)
...
prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);
if (prot_checksum == 0U) { /* checksum is OK */
if (msg->epoch == ring_seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma_completed;

...

DMA I/O mapping Driver Source Code



Unable to handle kernel paging request at virtual 
address 2f6d657473797337

Kernel panic - not syncing: Fatal exception in 
interrupt

msg

Double-fetch Bug – Overlapping Fetch & OOB

❷ The driver fetches the same bytes again from msg
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Out-of-bounds access

Overlapping fetch (fuzzed)

DMA I/O mapping

ifidx = msg->cmn_hdr.if_id; 
...

ifp = dhd->iflist[ifidx];

Driver Source Code



Kernel Address Leak (CVE-2018-11947)

Symptom:
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Unable to handle kernel paging request at virtual address 
17000000d7ff0008

Kernel panic - not syncing: Fatal exception in interrupt

A fuzzed value provided by PeriFuzz
was directly being dereferenced.



Kernel Address Leak (CVE-2018-11947)

❶ Driver sends a kernel pointer to the device

❷ Device sends the cookie back, which is then dereferenced by the driver
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non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));
...
// use pointer as cookie (which is later sent to the device)
cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);
...

req = ol_txrx_u64_to_stats_ptr(cookie);
...
req->... // A value read from I/O mapping is dereferenced

DMA I/O mappings
Write
cookie

Read
cookie

(fuzzed)

Driver Source Code



Fuzzing Throughput

• Fuzzing throughput is about 7~24 
inputs/sec depending on the nature 
of the I/O mapping being fuzzed.

• The number of page faults is the 
main contributor.

• We expect an improvement of at 
least 2x-3x with further 
optimization. (Details in the paper)
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cf) On Pixel 2, Syzkaller achieves on average 24 program executions per second (max: ~60).
(1 proc ADB-based configuration measured for a 15-min period) 

Phone/Driver I/O 
Mapping

Peak Throughput
(# of test inputs/sec)

Pixel 2 -
QCACLD-3.0

QC1 23.67
QC2 15.64
QC3 18.77
QC4 7.63

Galaxy S6 -
BCMDHD4358

BC1 9.90
BC2 14.28
BC3 10.49
BC4 15.92



Future Work

• Minimizing the impact of shallow bugs
• All bugs found in less than 10000 inputs
• Shallow bugs frequently hit, which causes system restarts (reboot takes 1 min)
• We had to manually disable subpaths rooted at bugs already found

• Improving throughput
• Slower than, for example, typical user-space fuzzing
• Possible optimizations and trade-offs outlined in the paper
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Conclusion

• Remote peripheral compromise poses a serious threat to OS kernel 
security.

• PeriScope and PeriFuzz are practical dynamic analysis tools that can 
analyze large, complex drivers along the hardware-OS boundary.

• PeriScope and PeriFuzz are effective at finding vulnerabilities along 
the HW-OS boundary.
• Memory overreads/overwrites, address leak, null pointer dereferences, 

reachable assertions, and double-fetch bugs
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Q & A

Thank you!

Contact
Dokyung Song

Ph.D. Student at UC Irvine
dokyungs@uci.edu
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