PeriScope: An Effective Probing
and Fuzzing Framework for the
Hardware-OS Boundary

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn Volckaert,
Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, Michael Franz

U Techmsche U C s B m
Universitat

Berlin

Remote compromise of peripheral chips

E@r_

iPh Broadcom chip bugopened1 p
bu: hillion phones to a Wi-Fi-

GOO(

owe hOpping worm attack

4‘1 s WIi-Fi chips used in iPhones and Android may revive worm attacks of

old.

DAN GOODIN -7/28/2017, 12:35 PM

Hardware-0OS Interface: MMIO and DMA

Physical
Memory
Yag = *
all 5
Memory-mapped I/O User mode
Peripheral (MMIO) Kernel mode
Device Device Device Yo
registers Driver
Main processor
/oMy |
MMU
Direct Memory Access

(DMA)

Threat Model

Physical
Memory
Y
Memory-mapped I/O User mode
(MMIO)
Device
registers
| vofmu |
MMU
Direct Memory Access

(DMA)

State-of-the-art: Analyzing HW-OS Interface
(1/3)

* Device Adaptation
* Pros: Non-intrusive (OS-independent)
* Cons: Need for programmable device + limited visibility into driver

\g

I/O mappings
Peripheral @ Device
Device Driver

Reprogram the device
(e.g., FaceDancer21 custom USB)

State-of-the-art: Analyzing HW-OS Interface
(2/3)

* Virtual Machine
* Pros: High visibility yet non-intrusive
* Cons: Need for virtual device and/or virtualization HW support

I/0 mappings
)E : D

Virtual machine (e.g., QEMU or hypervisor)

State-of-the-art: Analyzing HW-OS Interface
(3/3)

* Symbolic Devices
* Pros: No need for physical/virtual device
* Cons: Inherits cons of symbolic execution

I/O mappings

@ Symbolic input -
D

Symbolic execution environment (e.g., S2E)

PeriScope — Our Approach

* In-kernel, page-fault-based monitoring

* Pros: No device-specific/virtualization requirement, Fine-grained
monitoring

* Cons: OS-dependent

I/O mappings

Peripheral ; Device
Device g Driver
fault

PeriScope

=P Normal driver execution

Pe riSCO pe Ove rVieW =P PeriScope-induced flow

Page Table :
; Q PeriScope marks

allocated pages as
not present

M
M o Driver allocates
U MMIO/DMA
Do lee | Mappings MMIO/DMA
Driver Allocation API
OS kernel

=P Normal driver execution

Pe riSCO pe Ove rVieW =P PeriScope-induced flow

9 PeriScope fault handler

Page Table

Examine faults

Q PeriScope calls
user-registered
hooks

Kernel Page

9 Page fault Fault Handler

c <<

User-registered Hooks

Device

Driver

o Driver accesses 6 PeriScope resumes driver execution

MMIO/DMA mappir|gs

OS kernel

PeriFuzz — Fuzzer for the HW-0OS boundary

e Goal: To find vulnerabilities in drivers reachable from
a compromised device

* Therefore, PeriFuzz fuzzes Driver’s Read Accesses to
MMIO and DMA mappings

PeriFuzz Overview Fuzzer
l OXDEADBEEF

Executor

User space

Kernel space

9 Overwrite the

0 Request fuzzing destination register with
drivers’ read accesses a fuzzer-provided value

PeriFuzz Hook =—————ly Injector

regs[dest |=0xDEADBEEF

9 Resume driver’s execution

Threat Model Review

/0 mappings

Peripheral I | Device
Device | Driver

Attacker can write any value to the I/O mappings
even multiple times at any time

13

Potential Double-fetch Bugs in I/O Mappings

9 Malicious Update

Peripheral

Device

o First fetch

& check passes

9 Overlapping fetch
(without rechecking)

An 1/O mapping

if (*map_ptr <= Ox00FF) {

e

array|[*map_ptr] = ...;

_/

Sequential Fuzzer .
. uzzer
Input Consumption
_______________________ ﬂﬂ e
An 1/O mapping : Kernel space

Injector ‘ DE AD |

Page Fault .
Device

Driver

NON-overlapping Fetch

15

Kernel Driver PeriFuzz

Fuzzing Loop

Execution Execution Execution

* Each iteration of the fuzzing loop

consumes a single fuzzer- softirq

enerated input t
5 P il Reads from
- /0 mappings

e aligned to the execution of .

software interrupt (softirq) Single |

handler’s enter & exit Iteration

* can have one or more reads from
/0 mappings. exit

16

Prototype Implementation

* Based on Linux kernel 4.4 for AArch64 (Google Pixel 2)
e Ported to 3.10 (Samsung Galaxy S6)

e AFL 2.42b as PeriFuzz front-end

Fuzzing Target: Wi-Fi Drivers

1. Large codebase (Qualcomm’s: 443,222 SLOC and Broadcom’s:
122,194 SLOC)

2. Highly concurrent (heavy use of bottom-half handlers, kernel
threads, etc.)

3. Lots of code runs in interrupt & kernel thread contexts (rather than
system call contexts)

4. No virtual device implementation available

5. No hypervisor support (EL2 not available in production
smartphones)

Bugs Found

 Different classes of bugs
* O puffer overreads or overwrites
1 kernel address leak
* 3 reachable assertions
* 2 null pointer dereferences

* In total, 15 vulnerabilities discovered
* 9 previously unknown
* 8 new CVEs assigned

Double-fetch Bug — Initial Fetch & Check

o The driver computes and verifies the checksum of a message

DMA I/O mapping

Driver Source Code

msg

p

static uint8 dhd prot d2h sync xorcsum(...)

prot checksum = bcm compute xor32((volatile uint32 *)msg, num words);
if (prot checksum == 0U) { /# checksum is OK */
if (msg->epoch == ring seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma completed;

20

Double-fetch Bug — Overlapping Fetch & OOB

9 The driver fetches the same bytes again from msg

DMA 1/O mapping Driver Source Code
:mz ifidx = msg->cmn hdr.if id; Overlapping fetch (fuzzed)
msg ifp = dhd—>iflist[ifidx];* Out-of-bounds access
‘5;7' Unable to handle kernel paging request at virtual
address

Kernel panic - not syncing: Fatal exception in
interrupt

21

Kernel Address Leak (CVE-2018-11947)

Unable to handle kernel paging request at virtual address
17000000d7 0008

Kernel panic - not syncing: Fatal exception in interrupt

Symptom: A fuzzed value provided by PeriFuzz
was directly being dereferenced.

Kernel Address Leak (CVE-2018-11947)

0 Driver sends a kernel pointer to the device

DMA I/O mappings

cookie

1 Write

<

Driver Source Code

| 74

non_volatile req = qdf_mem_malloc(sizeof(*non_volatile req));

// use pointer as cookie (which is Llater sent to the device)
cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);

G Device sends the cookie back, which is then dereferenced by the driver

Read

slllcookie
‘ ‘ ‘ ‘ ‘ , (fuzzed)

Vy

req = ol_txrx_u64_to_stats_ptr(cookie);

req->... // A value read from I/0 mapping is dereferenced

23

Fuzzing Throughput

. . o~ . I/O Peak Throughput
Fuzzing throughput is about 7~24 Phone/Driver |\ ning | (# of test inputs/sec)
inputs/sec depending on the nature - 3 &7
of the I/O mapping being fuzzed. Q :

Pixel 2 - QC2 15.64
. QCACLD-3.0 QC3 18.77
* The number of page faults is the
; i QC4 7.63
main contributor.
BC1 9.90
. Galaxy S6 - BC2 14.28
* We expect an improvement of at BCMDHD4358 BC3 10.49
least 2x-3x with further
BC4 15.92

optimization. (Details in the paper)

cf) On Pixel 2, Syzkaller achieves on average 24 program executions per second (max: ~60).

(1 proc ADB-based configuration measured for a 15-min period)

Future Work

* Minimizing the impact of shallow bugs
* All bugs found in less than 10000 inputs
» Shallow bugs frequently hit, which causes system restarts (reboot takes 1 min)
* We had to manually disable subpaths rooted at bugs already found

* Improving throughput
* Slower than, for example, typical user-space fuzzing
* Possible optimizations and trade-offs outlined in the paper

Conclusion

 Remote peripheral compromise poses a serious threat to OS kernel
security.

* PeriScope and PeriFuzz are practical dynamic analysis tools that can
analyze large, complex drivers along the hardware-OS boundary.

* PeriScope and PeriFuzz are effective at finding vulnerabilities along
the HW-OS boundary.

 Memory overreads/overwrites, address leak, null pointer dereferences,
reachable assertions, and double-fetch bugs

Q&A

Thank youl!

Contact
Dokyung Song
Ph.D. Student at UC Irvine
dokyungs@uci.edu

27

mailto:dokyungs@uci.edu

