
PeriScope: An Effective Probing
and Fuzzing Framework for the

Hardware-OS Boundary
Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn Volckaert,

Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, Michael Franz

Remote compromise of peripheral chips

2

I/O MMU

Hardware-OS Interface: MMIO and DMA

Main processor

Peripheral
Device

Physical
Memory

Device
registers

Kernel mode

User mode

Direct Memory Access
(DMA)

MMU

Device
Driver

Memory-mapped I/O
(MMIO)

User-
Process

3

Threat Model

I/O MMU
Main processor

Peripheral
Device

Physical
Memory

Device
registers

Kernel mode

User mode

Direct Memory Access
(DMA)

MMU

Device
Driver

Memory-mapped I/O
(MMIO)

User-
Process

Peripheral
Device Device

registers

4

State-of-the-art: Analyzing HW-OS Interface
(1/3)
• Device Adaptation
• Pros: Non-intrusive (OS-independent)
• Cons: Need for programmable device + limited visibility into driver

Device
Driver

Peripheral
Device

Reprogram the device
(e.g., FaceDancer21 custom USB)

I/O mappings

5

Virtual machine (e.g., QEMU or hypervisor)

State-of-the-art: Analyzing HW-OS Interface
(2/3)
• Virtual Machine
• Pros: High visibility yet non-intrusive
• Cons: Need for virtual device and/or virtualization HW support

Device
Driver

Peripheral
Device

I/O mappings

6

Symbolic execution environment (e.g., S2E)

State-of-the-art: Analyzing HW-OS Interface
(3/3)
• Symbolic Devices
• Pros: No need for physical/virtual device
• Cons: Inherits cons of symbolic execution

Device
Driver

Symbolic input
I/O mappings

7

PeriScope

PeriScope – Our Approach

• In-kernel, page-fault-based monitoring
• Pros: No device-specific/virtualization requirement, Fine-grained

monitoring
• Cons: OS-dependent

Device
Driver

Peripheral
Device

Page
fault

I/O mappings

8

PeriScope Overview

OS kernel

M
M
U

Page Table

Device
Driver

MMIO/DMA
Allocation API

❷ PeriScope marks
allocated pages as
not present

❶ Driver allocates
MMIO/DMA
mappings

Normal driver execution
PeriScope-induced flow

9

PeriScope Overview

OS kernel

M
M
U

Page Table

Device
Driver

Kernel Page
Fault Handler

Examine faults

User-registered Hooks

❷ Page fault

❺ PeriScope resumes driver execution❶ Driver accesses
MMIO/DMA mappings

❸ PeriScope fault handler

❹ PeriScope calls
user-registered
hooks

Normal driver execution
PeriScope-induced flow

10

PeriFuzz – Fuzzer for the HW-OS boundary

•Goal: To find vulnerabilities in drivers reachable from
a compromised device

• Therefore, PeriFuzz fuzzes Driver’s Read Accesses to
MMIO and DMA mappings

11

OS kernel

Device
Driver

Kernel Page
Fault Handler

Examine faults

User-registered Hooks

PeriFuzz Overview

PeriScope Framework

Fuzzer

0xDEADBEEF

Executor

regs[dest]=0xDEADBEEF

❷ Overwrite the
destination register with
a fuzzer-provided value

PeriFuzz Hook

❸ Resume driver’s execution

Injector

User space

Kernel space

❶ Request fuzzing
drivers’ read accesses

12

Threat Model Review

Attacker can write any value to the I/O mappings
even multiple times at any time

Peripheral
Device

Device
Driver

I/O mappings

13

if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00
00 00 11 00

...

Potential Double-fetch Bugs in I/O Mappings

Peripheral
Device

An I/O mapping

❶ First fetch

❷ Malicious Update

❸ Overlapping fetch
(without rechecking)

00 11
Device
Driver00 11

14

& check passes

DE AD
DE AD

DE AD 01 23
DE AD 45 67
DE AD 01 23
DE AD 45 67

DE AD BE EF

DE AD BE EF
An I/O mapping

01 23 45 67
89 AB CD EF
01 23 45 67
89 AB CD EF

Sequential Fuzzer
Input Consumption

Page Fault DE AD

Overlapping Fetch

Kernel space

User space

15

BE EF

Device
Driver

NON-overlapping Fetch

DE AD
Page Fault

Fuzzer

Injector

Fuzzing Loop

• Each iteration of the fuzzing loop
consumes a single fuzzer-
generated input

• aligned to the execution of
software interrupt (softirq)
handler’s enter & exit

• can have one or more reads from
I/O mappings.

16

Kernel
Execution

Reads from
I/O mappings

Single
iteration

...

Driver
Execution

PeriFuzz
Execution

...
...

softirq
enter

exit

#PF

#PF

Prototype Implementation

• Based on Linux kernel 4.4 for AArch64 (Google Pixel 2)

• Ported to 3.10 (Samsung Galaxy S6)

• AFL 2.42b as PeriFuzz front-end

17

Fuzzing Target: Wi-Fi Drivers

Broadcom’s Wi-Fi driver
in Samsung Galaxy S6

Qualcomm’s Wi-Fi driver
in Google Pixel 2

18

1. Large codebase (Qualcomm’s: 443,222 SLOC and Broadcom’s:
122,194 SLOC)

2. Highly concurrent (heavy use of bottom-half handlers, kernel
threads, etc.)

3. Lots of code runs in interrupt & kernel thread contexts (rather than
system call contexts)

4. No virtual device implementation available
5. No hypervisor support (EL2 not available in production

smartphones)

Bugs Found

• Different classes of bugs
• 9 buffer overreads or overwrites
• 4 double-fetch issues
• 1 kernel address leak
• 3 reachable assertions
• 2 null pointer dereferences

• In total, 15 vulnerabilities discovered
• 9 previously unknown
• 8 new CVEs assigned

19

Double-fetch Bug – Initial Fetch & Check

❶ The driver computes and verifies the checksum of a message

20

msg

static uint8 dhd_prot_d2h_sync_xorcsum(...)
...
prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);
if (prot_checksum == 0U) { /* checksum is OK */
if (msg->epoch == ring_seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma_completed;

...

DMA I/O mapping Driver Source Code

Unable to handle kernel paging request at virtual
address 2f6d657473797337

Kernel panic - not syncing: Fatal exception in
interrupt

msg

Double-fetch Bug – Overlapping Fetch & OOB

❷ The driver fetches the same bytes again from msg

21

Out-of-bounds access

Overlapping fetch (fuzzed)

DMA I/O mapping

ifidx = msg->cmn_hdr.if_id;
...

ifp = dhd->iflist[ifidx];

Driver Source Code

Kernel Address Leak (CVE-2018-11947)

Symptom:

22

Unable to handle kernel paging request at virtual address
17000000d7ff0008

Kernel panic - not syncing: Fatal exception in interrupt

A fuzzed value provided by PeriFuzz
was directly being dereferenced.

Kernel Address Leak (CVE-2018-11947)

❶ Driver sends a kernel pointer to the device

❷ Device sends the cookie back, which is then dereferenced by the driver

23

non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));
...
// use pointer as cookie (which is later sent to the device)
cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);
...

req = ol_txrx_u64_to_stats_ptr(cookie);
...
req->... // A value read from I/O mapping is dereferenced

DMA I/O mappings
Write
cookie

Read
cookie

(fuzzed)

Driver Source Code

Fuzzing Throughput

• Fuzzing throughput is about 7~24
inputs/sec depending on the nature
of the I/O mapping being fuzzed.

• The number of page faults is the
main contributor.

• We expect an improvement of at
least 2x-3x with further
optimization. (Details in the paper)

24

cf) On Pixel 2, Syzkaller achieves on average 24 program executions per second (max: ~60).
(1 proc ADB-based configuration measured for a 15-min period)

Phone/Driver I/O
Mapping

Peak Throughput
(# of test inputs/sec)

Pixel 2 -
QCACLD-3.0

QC1 23.67
QC2 15.64
QC3 18.77
QC4 7.63

Galaxy S6 -
BCMDHD4358

BC1 9.90
BC2 14.28
BC3 10.49
BC4 15.92

Future Work

• Minimizing the impact of shallow bugs
• All bugs found in less than 10000 inputs
• Shallow bugs frequently hit, which causes system restarts (reboot takes 1 min)
• We had to manually disable subpaths rooted at bugs already found

• Improving throughput
• Slower than, for example, typical user-space fuzzing
• Possible optimizations and trade-offs outlined in the paper

25

Conclusion

• Remote peripheral compromise poses a serious threat to OS kernel
security.

• PeriScope and PeriFuzz are practical dynamic analysis tools that can
analyze large, complex drivers along the hardware-OS boundary.

• PeriScope and PeriFuzz are effective at finding vulnerabilities along
the HW-OS boundary.
• Memory overreads/overwrites, address leak, null pointer dereferences,

reachable assertions, and double-fetch bugs

26

Q & A

Thank you!

Contact
Dokyung Song

Ph.D. Student at UC Irvine
dokyungs@uci.edu

27

mailto:dokyungs@uci.edu

